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ABSTRACT 

The argument is made that biological modeling should recognize limitation simul- 
tation and reductionism. 

1. INTRODUCTION 

In my days as a graduate student at the University of Chicago, its 
Department of Mathematics was one of the best in the country if not in the 
world. 

But it was a department of pure mathematics. Every once in a while, the 
Department would establish a committee to study whether there should be 
more applied mathematics done in the Department. These committees, as 1 
recall, were always chaired by Saunders MacLane. They would work very 
hard, and always came up with the same recommendation; namely, that the 
mix of pure and applied mathematics being done in the Department was 
already optimal. Hence, the status quo was maintained. 

As far as I am concerned, the only real difference between “pure” and 
“applied’ mathematics lies in the fact that applications of formalisms pre- 
sume some kind of referent external to the formalism itself. As we shall see, it 
is the judicious association of a formalism with such external referents that is 
the essence of a (mathematical) model. From this point of view, a great deal 
of what passes for pure mathematics is really applied mathematics; it is 
essentially modelling in the above sense, except that the external referents 
assigned to a particular formalism are themselves mathematical in character. 
In this sense, everything from analytic geometry to algebraic topology is 
applied mathematics. Indeed, people do not, in general, recognize just how 
much modelling goes on within the precincts of pure mathematics itself, and 
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how much can be learned about the modelling enterprise from this recogni- 
tion. 

One attempt to systematize this kind of modelling experience within 
mathematics is today embodied in the Theory of Categories. This theory grew 
directly out of algebraic topology, which itself involves the assignment of 
algebraic referents to topological or geometric structures, and vice versa. The 
Theory of Categories is thus, in a sense, a kind of general theory of 
modelling, and one of its fathers was none other than Saunders MacLane. 
Thus, perhaps he knew whereof he spoke when he said that his Department 
was already doing “enough” applied mathematics; it was, in fact, doing quite 
a lot. Indeed, the lessons I indirectly learned from him about modelling in 
general, under the peculiar guise of Category Theory, were among the most 
valuable I ever learned. 

In the present article, we shall be concerned with just this process of 
assigning external referents to formalisms, which constitutes the making of 
models. As we shall see, this is a process that is in the nature of an art, and 
not a science; there is nothing in either the formalisms or the referents that 
mandates or entails how it is to be done. If it is not done carefully, the 
process itself creates artifacts; we will exhibit a few examples of these. 
Finally, we shall briefly consider the Theory of Categories as both exemplar 
and tool of the modelling enterprise by briefly considering what the structure 
of the category of models of a system tells us about the system itself. 

2. GOOD MATHEMATICS, BAD MODELS 

As we have seen, pure mathematics is in a paradoxical situation when it 
comes to modelling. One the one hand, a great deal of modelling is done 
entirely within its precincts. On the other hand, its rejection of extra- 
mathematical referents is proverbial and amounts almost to an immune 
response. Indeed, the need to make allowances for alien extra-mathematical 
referents imposes a severe handicap on pure mathematicians when it comes 
to modelling; a handicap almost as severe, although for an opposite reason, is 
that faced by pure empiricists ignorant of formalisms. Thus, good mathemati- 
cians often make bad modellers. 

Let me illustrate this paradox, with a typical example drawn from current 
literature. Names will be withheld to protect the guilty. As we will see, the 
example is interesting in itself; we will present it first, and then, in subse- 
quent sections, trace its sources. 

Vito Volterra was a good mathematician who also was a good modeller. 
Volterra had been a pioneer in what is nowadays called functional analysis, 
especially in connection with integral equations. Rather late in life, he turned 
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to the studying of interacting biological populations, which he came to 
describe by means of systems of ordinary differential equations, kinetic 
equations of mass-action type: 

dxi/dt = airi + f bijxixj, i = l,...,iV. (1) 
j=1 

Just about everything in current mathematical ecology stems from these 
equations in one way or another. 

The extra-mathematical referents here pertain to the populations that 
these equations are intended to describe. The “state variables” xi are thus 
interpreted as population sizes or population densities. Obviously, these facts 
translate at least into the purely formal conditions 

even though the equations in (1) are formally defined for other situations as 
well. Consequently, no one cares what these equations do when the variables 
are negative. So far, so good. 

The equations in (1) have a lot of nice properties, most of which were 
already known to Volterra. For one thing, a corollary of them is the so-called 
Principle of Competitive Exclusion (cf. [l]), which refers to the persistence of 
species in a given population. This is clearly a question of great interest to 
population biologists; given a population of interacting species, which will 
persist, and which will go extinct? That is, for which xi in (1) will we have 

lim xi(l) --t 0 
*-+m 

under a given set of initial conditions? 
On the other hand, formal objects like (1) have been the subject of deep 

(pure> mathematical study over the past three or four decades under the 
rubric of dynamical systems. There are now a lot of general theorems about 
them; application of these to (1) should presumably tell us a lot about 
biological populations. The problem of extinction and persistence, for in- 
stance, devolves on whether or not there are attractors of (1) lying on the 
hyperplanes xi = 0 that bound the first orthant of the N-dimensional state 
space on which (1) is defined. 
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This is now, apparently, a purely formal, mathematical problem, which 
pure mathematicians can happily attack without worrying further about the 
external biological referents that gave rise to it. And indeed, there are a 
substantial number of papers that investigate precisely this problem-papers 
that study the existence of such attractors and the details of how trajectories 
approach them. Good, subtle mathematics here, but very poor modelling. 

Why? Simply because, when population sizes get small, the rate equations 
in (1) progressively lose their meaning; they lose their contact with the 
external referents they are supposed to describe. The use of such systems of 
differential equations, and of all the tools of analysis that come with them, are 
tacitly predicated on a hypothesis, namely, that population sizes are large 
enough to justify it. When this hypothesis is not satisfied, as it is not 
whenever we are close to the bounding hyperplanes of the first orthant, the 
properties of (1) are utterly artifactual as far as population biology is 
concerned. 

In fact, the deterministic rate equations in (1) are themselves an approxi- 
mation to something else-an approximation that is only good under certain 
conditions, and no good othenvise. We may look upon them as a macroscopic 
version of underlying microscopic processes, which are not themselves gov- 
erned by those equations. Intuitively, by forcing population sizes to become 
small, we correspondingly force the underlying microscopic properties to 
become more and more prominent until they simply swamp everything else. 

It was precisely this kind of situation that occurred with the birth of 
quantum theory. In that case, again, we had systems of rate equations like (I), 
coming from Newton’s Laws, which were thought to be universally applica- 
ble. They did, indeed, work very well for matter in bulk, but became 
increasingly wronger as we approach the atomic level. Bohr’s “old quantum 
theory” proposed a whole new set of rules that completely changed the game 
for microscopic phenomena, subject to what he called the Correspondence 
Principle-roughly, that when we had “enough” microscopic phenomena, 
their aggregate had to behave in a way describable by the old macroscopic 
rules. 

If we suppose that what happens at the microscopic level is governed by 
stochastics (i.e., by some kind of Master Equation), then we are in a world of 
means and variances. The Correspondence Principle says that when variances 
are small enough, we only have to worry about the means, and then these 
means are governed by deterministic equations like (1). In other words, the 
equations in (1) are approximations based on the hypothesis that variances are 
negligible. And, of course, in the present situation, that translates into large 
population sizes. 

Thus, it is no accident that population dynamics exhibits many quantum-like 
phenomena when population sizes get small. Just for fun, let us look at a few 
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of them in a very familiar special case, where our population consists of one 
predator species y, and one prey species x. The equations in (1) thus assume 
the form 

dx/dt = a,r - b,ry 

dy/dt = -a2y + b,xy (2) 

with the familiar phase portrait shown in Figure 1, consisting of neutrally 
stable closed trajectories. There is even a conserved quantity, and the whole 
thing can be put into a Hamiltonian form (cf., [4]). 

However, as we have indicated, close enough to the lines x = 0, y = 0, 
these rate equations, and hence the phase portrait they determine, become 
increasingly wronger when compared with the actual behavior of the real 
population. Let us schematically follow one actual trajectory of such a 
popualtion over a few cycles. We would see something like Figure 2. Here, 
the solid parts of the trajectory are those governed by (2>, the deterministic, 
macroscopic equations. The dotted parts represent population sizes small 
enough so that these equations no longer hold, e.g., where variances or 
“fluctuations” become dominant. Even supposing that the dotted curves 
swing around as indicated, we will, in general, come back into the macro- 
scopic region on a different trajectory than we left it. That is, we have 
violated the conservation law; we have “tunneled’ to a different value of the 
conserved quantity. Indeed, we have a situation highly reminiscent of chaos, 
already in two dimensions. We may even “tunnel” to extinction of the 
predator, or of the entire population. 

FIG. 1. 
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FK. 2 

All of this arises because the rate equations (1) or (2) are being employed 
under conditions where the appropriate Correspondence Principle, which 
attaches meaning to them, is being violated. We can still fomuZZy study those 
rate equations, but they no longer need approximate what the populations 
themselves are actually doing. We have lost the external referents, and hence 
are left with a bad model, indeed, not a model at all. 

3. COGNATE SITUATIONS IN PURE MATHEMATICS 

Situations like that sketched in the preceding section are not, unfortu- 
nately, all that uncommon. I chose this one to begin to illustrate a basic point, 
because it is fairly transparent what is happening here. Namely, we have 
replaced a system of interest (a biological population) by a mathematical 
object (a system of rate equations), without sufficiently noting the conditions 
that allow it, conditions coming both from the mathematical model and from 
the external referent it is supposed to describe. 

Can such a thing happen within the precincts of pure mathematics itself? 
Of course it can, and, indeed, it has happened many times. It happened to 
Pythagoras, who tried to replace arbitrary numbers by ratios of integers. It 
happened to everyone who tried to follow in the footsteps of Euler and the 
Bemoullis, and ended up trying to sum a divergent series. As we shall soon 
see, it happened not too long ago to Hilbert himself. 

Instead of looking at any of these historical cases, we shall look rather at 
one place where perhaps it did not happen, but could have happened. This 
field is topology, as pure a part of mathematics as there is, but one which has 
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always been rife with models of various kinds. Indeed, it is out of the relation 
between the objects of topology, the topological spaces, and their various 
models that the theory of categories, to which we have already alluded, 
historically grew. That is the reason we choose these examples. 

Everyone knows that the first conscious steps towards topology were taken 
by Euler. Everyone knows about the Seven Bridges of Koenigsberg, and how 
Euler solved the problem they posed by what we nowadays call graph- 
theoretic methods. But these graph-theoretic models led Euler much further. 
By means of such ideas, he was led to his famous Formula, connecting the 
number of vertices, edges, and faces of an arbitrary convex polyhedron in 
space: 

vertices - edges + faces = 2. 

This is, by itself, an amazing relation, but its true depth was not perhaps fully 
realized until the time of Poincar6. By itself, it seems to be a property of 
polyhedra, or more generally, to the graphs (arrays of vertices and edges) to 
which they give rise. But from a more general perspective, the Euler 
Formula expresses a property, not of these graphs, but of the space in which 
they are drawn. In this sense, the graph is a model of that space. 

In thinking of a graph as a model of a larger thing, of a topological space, 
we must interpret the vertices of the graph as points of the space (i.e., as a 
discrete, finite subspace) and the edges of the graph as arcs or curves lying in 
that space and bounded by the appropriate vertices. These are the external 
referents. Then it is a theorem that every graph can be so interpreted, as 
defining a “polyhedron” in an appropriate space (one of sufficiently high 
genus, or with “enough holes”), and under such circumstances, the appropri- 
ate Euler Formula defines a topological invariant of that space. That is, the 
Euler number, or Euler Characteristic, is obviously invariant under topologi- 
cal homeomorphisms of the whole space. In particular, two topological spaces 
whose Euler characteristics are different cannot be homeomorphic. 

In all of this, the external referents, the topological interpretations given to 
abstract graph-theoretic structures play an absolutely essential role. As noted, 
we must think of vertices as points of a topological space, and edges as arcs 
(l-dimensional subsets of the space) connecting them. The property of the 
external topological referent (namely, that edges can only intersect in vertices 
and not elsewhere), is precisely what allows us to talk about higher- 
dimensional faces in graph-theoretic terms; these, in turn, are precisely what 
get counted up in the Euler Formula. 

It should be evident that this process of associating a graph with a 
topological space, in such a way that properties of the graph (e.g., the Euler 
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characteristic) tell us something about the space, is very like associating a 
system of rate equations with a biological population; they are all instances of 
modelling. However, it is clear in the topological situation that one cannot 
generally replace the original space by such a graph, i.e., pretend that the 
graph tells us all about the space to which it is related. So we are not easily 
prone to the same kind of error we made with the population. 

The relation we have established between the space and the graph tells us 
something about modelling itself, out where we can see it clearly, unencum- 
bered by the thick epistemological veils that permeate the sciences. We will 
accordingly push this purely mathematical situation, which we have intro- 
duced with the Euler Characteristic, a little further, not because we are 
interested in topology, but because we are interested in modelling. In a way, 
we are going to try our hand at making models of modelling, turning the 
process on itself. 

4. ALGEBRAIC TOPOLOGY 

In the preceding section, we sketched how to associate with a topological 
space X a graph G(X) d rawn in that space in such a way that G( X > tells us 
something about X. This association is established by making G(X) refer to 
X, by encoding properties of X into G(X), and by decoding properties of 
G(X) back to X. 

The rule G that associates a space X with a graph G( X> pertains not only 
to the spaces themselves, but to the continuous mappings that compare them. 
Thus, if f: X * Y is a continuous map between topological spaces, there is a 

map G(f 1: G(X) -+ G(Y ) that compares their graphs. In particular, we have 
already seen that if f is a homeomorphism of topological spaces, then G(f) 

relation between X and Y (e.g., that X is a of Y > would express 
itself as a corresponding relation 

functor. It is obviously relation between a model 
G( Xl and its X. That itself has referent, pertains to 
modelling topology. 

The reasoning embodied in 
the Euler Characteristic, enormous which first 
began to be by Poincare. Nowadays 

homology, cohomology, homotopy 
Analysis Situs, combinatorial topology, and alge- 

braic topology. 
embodied in the Euler Characteristic. 
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a topological space X, not by a single polyhedron, but by a sufficiently large 
family of them: a complex. Then, in the individual polyhedra (sirnplexes) 

which make up the complex, to introduce an idea of orientation or sense, 
which allow us to add faces (an algebraic operation) and to interpret this 
addition in terms of navigating through the complex itself. This leads to the 
idea of groups of chains of various dimensions. The simple intuitive notion of 
boundary turns out to induce homomorphisms between these groups of 
chains of each dimension, with the nice property that the image of any one of 
them is contained in the kernel of the next (exactness); hence, the boundary 
of a boundary is zero. The quotient groups of kernels modulo images are the 
homology groups of the complex, and, hence, if we are careful, of the space 
X to which the complex “approximates.” 

When we are all done, we have assigned to a topological space X a whole 
family H,(X) f o commutative groups, the q-dimensional homology groups, 
for 9 = 0, 1,2, . . . And just as before, if f: X --j Y is a continuous mapping 
between topological spaces, we find induced group homomorphisms H,(f) 
between the homology groups. Each of these homology groups provides a 
model of the space X, just as did the graph we had before. Indeed, the graph 
is subsumed into these group-theoretic models in a way that generalizes the 
Euler Formula we spoke of earlier. 

These concepts can be dualized, in a way familiar from the dual spaces of 
Euclidean vector spaces. We pass, via this duality, to a new family Hq(X) of 
group-theoretic models of X, the cohomlogy groups. Their advantage is that 
they admit additional structures, which also turn out to represent aspects of 
the topology of X; for instance, there is a multiplication (cup product) that 
turns the family of cohomology groups into a kind of graded ring. There are 
additional cohornology operations, which provide a still more elaborate 
algebraic structure. 

Of course, we cannot enter into details here. But the goal, or animating 
faith, of algebraic topology is that there are “enough” of these algebraic 
models to faithfully capture every aspect of the topology of a space X, and, 
hence, to answer every topological question about X in purely algebraic 
terms. In particular, the faith is that there are “enough” such models to 
answer the basic question of (algebraic) topology: when are two topological 
spaces X, Y homeomorphic? (the classification problem). 

Let us examine this article of faith for a moment. Suppose that X is a 
topological space. We have, as we have seen, a rather large spectrum of 
algebraic, group-theoretic models of X, namely the H,(X) and HY( X), 

together with certain relations between them. Suppose that these were 
“enough” to answer every topological question about X (in fact, they are not 
“enough” in general). Then we could, in fact, simply forget about X entirely; 
X could be effectively reconstructed (up to homeomorphism anyway) from its 
algebraic models. We would thus no longer need the external referent X of 
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these models; X has been entirely internalized into the models themselves 
and the relations between them. 

Thus, the faith of algebraic topology, and indeed of modelling in general, 
is that we can replace a topological space X by a sufficiently comprehensive 
set of functorial images of X, more generally, that we can capture every 
aspect of reality in a natural system in an appropriate set of models. A 
corollary of this faith is, as we have seen, that we can dispense with the 
external referents entirely, for we have effectively internalized them into this 
catego y of fimctorial images. In this category, where everything we can know 
about the original system or space X has been internalized, we will never 
make the kind of simple-minded mistakes we spoke of earlier. 

The question then becomes: how far is such a faith justified? When can we 
justify it? In what f o 11 ows, we shall explore a couple of ramifications of this 
question. 

5. SYNTAX, SEMANTICS, AND FORMALIZATION 

Any language, including mathematics, must possess two distinct aspects, 
which we may refer to as syntax and semantics. Syntax pertains roughly to the 
internal rules governing the structure of the language itself; semantics per- 
tains to meanings, and hence to external referents. 

David Hilbert, goaded by the perceived need to defend mathematics in 
the face of the paradoxes of “naive” set theory, thought he could accomplish 
this task by expunging semantics from mathematics entirely. He argued in 
effect that, at least within mathematics itself, semantics could always be 
effectively replaced by more syntax. He called this process formalization. He 
believed that mathematical consistency could be assured, and all paradoxes 
eliminated, by replacing conventional mathematics by a game of pattern 
generation, played according to fixed rules, with meaningless symbols and 
combinations of them. 

Such ideas are, of course, closely related to what we have been talking 
about. So it is instructive to see what has happened to Hilbert’s plan to cut 
mathematics off from all referents, to completely expunge semantics from 
mathematics and replace it with pure syntax, i.e., with symbol manipulation 
and word processing. 

What happened was basically the GGdel Incompleteness Theorem of 1931, 
which laid waste to the whole formalist program. The conclusion of this 
theorem is that Number Theory could not thus be formalized-unless it was 
inconsistent to begin with. 

GGdel’s Theorem can be viewed in many ways. One of them is this: one 
cannot forget that number theory is about numbers. No matter how we try to 
formalize it, or to convert it to pure syntax, we miss most of the truths of 
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number theory thereby. Seen in this light, GGdel’s result is a kind of 
cardinality argument; the set of theorems of number theory (or more pre- 
cisely, the set of entailments which relate them) are of strictly higher 
cardinality than those coming from syntax along. 

Stated in yet another way, the relation between number theory and any 
hypothetical formalization (i.e., syntactization) of it is essentially that of 
system to model; it is the same relation as that obtaining between topological 
space X and the qth homology group H,(X). Gijdel’s Theorem shows that 
no such model of number theory will suffice, indeed, that no countable family 
of such models will suffice. 

One can happily spend one’s entire life within the precincts of such a 
formalization. One can even claim that he or she is doing number theory. 
But, as Godel’s Theorem makes clear, one is thereby trapped into, at best, an 
infinitesmal sliver of number theory. If we insist on having the formalistic 
cake and eating it too, most of number theory is thereby rendered (to borrow 
a term from Metaphysics) noumenal. Not to put too fine a point on it, we see 
that, at least in this context, the relation between noumenon and phe- 
nomenon is bound up with semantics (i.e., with external referents) and not 
with internal syntax. 

Lurking in the background of Giidel’s Theorem is, thus, an assertion of the 
form: the category of all formalizations of number theory is not number 
theory. Or, there exist models of number theory that are not formalizations. 
Such models must obviously manifest an inherent semantic character. 

6. SIMULATIONS AND MODELING 

People have been trying for a long time to move Gijdel’s Theorem from 
mathematics to science. The circle of ideas relating this theorem to mod- 
elling, which were briefly sketched in the preceding section, indicate one way 
in which this can be done. 

As we have seen, formalizations are very special kinds of mathematical 
systems; they are systems governed by syntax alone. This fact severely limits 
the entailments they can manifest; indeed, Giidel’s Theorem says that, 
compared with other mathematical systems (e.g., with number theory) for- 
malizations are impoverished. They rely entirely on symbol manipulation, 
according to a finite family of syntactical rules. 

Hence, the close tie between such formalizations and the concept of 
algorithm, and the concept of (mathematical) machine, already studied in 
great detail by Church, Tarski, Turing, and others, in the 1930’s. It was 
already shown in those days that all these ideas are equivalent, hence the 
pervasive interest in the kind of mathematics that could be done with the aid 
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of them alone, i.e., the kind of mathematics that we could “program a 
machine” to do, or better, to simulate. 

For some unfathomable reason, mathematical processes that could be thus 
simulated were called effective. As we have seen, effective processes in this 
sense are vanishingly sparse in mathematics. Nevertheless, the identification 
of “simulable” with “effective” has long been referred to as Church’s Thesis. 

We repeat that effectiveness, or simulability, is property of a mathematical 
system, pertaining to the replacement of semantics (external referents) by 
syntax. Accordingly, and we cannot stress this too strongly, simulation is not 

modelling . 
In any event, it makes perfect sense to ask of a mathematical system 

whether it is simulable (formalizable) or not. As we have seen, the answer is 
almost always “no.” In particular, we may ask of a mathematical system 
which is already a model whether it is simulable or not. If it is, then it is 
natural to impute the limitations that make it simulable back to the causal 
processes which the model is supposed to represent. In fact, in this way a 
simulation of the model becomes a simulation of that (natural) system. 

In this way, Church’s Thesis can be transmuted into an assertion, not just 
about mathematics, but about the material world itself. In essence, it asserts 
that evey model of a material system must be simulable. In this form, it 
becomes itself a law of nature, like the Second Law of Thermodynamics. 

If true in this context, the implications of Church’s Thesis are truly 
awesome. But on the face of it, the thesis does not look very startling. After 
all, are we not used to representing what goes on in the world by differential 
equations, which are always simulable? 

Indeed, it can be shown that the material world mandated by Church’s 
Thesis in this form is very like the world we know from contemporary 
physics, i.e., a very syntactic world of (structureless) particles and their 
configurations. If we look at the category of all models of a system in such a 
world, it has a very detailed structure. In a precise sense, there is a unique 
largest model, and a finite spectrum of smallest models (atoms). We can 
construct the largest model from the smallest, and conversely, and the same 
with every model in between. The material world is thus converted, by 
Church’s Thesis, into the reductionist’s dream. 

7. COMPLEX SYSTEMS 

Let us call a system satisfying Church’s Thesis (i.e., such that every model 
is simulable) a simple system or mechanism. 

As we saw above, GGdel’s Theorem shows that number theory is not 
simple. It does not satisfy Church’s Thesis in this form. Most of what goes on 
in number theory is ineffective: nonsimulable, nonalgorithmic, nonsyntactic. 
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Is the same true in science? Are there material systems that possess 
nonsimulable models? Is Church’s Thesis, so patently false in mathematics, 
nevertheless true in the material world? Is it the case that cuusaE entailments 
between events or phenomena are sufficiently impoverished to allow the 
thesis to hold? In a word, are there, or are there not, material systems that 
are not simple, not mechanisms ? Are there material systems that are com- 

plex, as number theory is complex in mathematics? 
I would argue that the answer to this last question is yes, and that, in 

particular, biology is replete with them. 
If so, then complexity in this sense is intimately tied up with the structure 

of the category of all models. In particular, there is, in general, no largest 
model in such a category, and, in general, no smallest models either. We 
cannot get away merely with models that are simulable, e.g., with differential 
equations that can be isolated from all external referents; to try to do so 
would be to commit precisely the error we discussed in Section 2 above. 
Above all, we must give up reductionism as a universal strategy for studying 
the material world. 

But what can we do in a material world of complex systems if we must give 
up every landmark that has heretofore seemed to govern our relation to that 
world? I can give an optimistic answer to that question, beginning with the 
observation that we do not give up number theory simply because it is not 
formalizable. Giidel’s Theorem pertains to the limitations of formalizability, 
not of mathematics. Likewise, complexity in the material world is not a 
limitation on science, but on certain ways of doing science. 

Indeed, category theory itself suggests what we must do. A complex system 
still admits a category of models. In it, there will be a proper subcategory of 
simulable models. We can take limits in that subcategory; if we do it properly, 
the limit of a family of simulable models will still be a model, but not, in 
general, itself simulable. We can thus extract ourselves from the limitations of 
simulability, and enter thereby into a whole new world of modelling. In fact, 
modelling offers the only way into such a world of complex systems. It cannot 
be reached empirically, through data, any more than GGdel’s Theorem 
expresses data about numbers. 

Thus, we will conclude with the same assertion with which we started, 
though at a far more general level. One cannot forget the external referents. 
Modelling contains ineluctable semantic aspects, which inherently defy for- 
malization. That is why modelling is, and will always remain, an art. 

8. IN LIEU OF REFERENCES 

The circle of ideas sketched in the text of the present paper has been 
germinating in my mind for a long time. I have talked about bits and pieces 
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of it, from various points of view, for about three decades now, but the full 
picture is relatively recent. In what follows, I will sketch the sources of its 
various elements; the reader is referred to these for more details, and for 
fuller background and references. 

I believe I was the first to suggest that category theory had important roles 
to play in the sciences [7]. The realization that this was so actually began 
dawning on me a couple of years earlier. I remember well my suggesting this, 
with a great deal of diffd 1 ence, to Samuel Eilenberg, from whom I first 
learned category theory. This was in 1958, when Eilenberg was in residence 
for a quarter at the University of Chicago. I will never forget his two-word 
response: “Oh, no.” At this point, I realized there would be no help from this 
quarter, and that I was on my own. 

My first discussion of Church’s Thesis as a hypothesis about the material 
world dates from three years later [3]. As far as I can recall, my earliest 
treatment of complexity, in terms of the set of models that could be made of 
a material system, dates from 1973 [8]. I have returned to these matters 
repeatedly (cf. especially [2, 5, 61. They are dealt with at greatest length in a 
monograph manuscript currently being prepared for publication. 
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